Perlu Network score measures the extent of a member’s network on Perlu based on their connections, Packs, and Collab activity.
Their white paper, entitled “How to Meet Power, Performance and Cost for Autonomous Vehicle Systems using Speedcore eFPGAs,” highlights both the challenges of addressing the self-driving space and the unique benefits of their embedded FPGA and standalone FPGA products in addressing those challenges. While breakthroughs in the application of AI have been key to realizing the long-term vision of self-driving cars, the performance required to support the underlying Dynamic Neural Network (DNN) translates into computing levels well in excess of 50 teraflops—a task Achronix’s next generation FPGA family can readily address. The introduction of automotive compliant GDDR-6 is proving to be a disruptive technology which provides the essential memory bandwidth to ensure AI compute pipelines are not stalled and deliver the requisite AI compute performance to realize the higher levels of autonomous driving up to L5. With over 42 percent market share and 28 years of commitment to the automotive market, Micron has taken industry leadership in the announcement of the delivery of automotive-qualified GDDR6—an essential ingredient to realizing the vision of self-driving cars.